Buckling of Rectangular Functionally Graded Material Plates under Various Edge Conditions
نویسندگان
چکیده مقاله:
In the present paper, the buckling problem of rectangular functionally graded (FG) plate with arbitrary edge supports is investigated. The present analysis is based on the classical plate theory (CPT) and large deformation is assumed for deriving stability equations. The plate is subjected to bi-axial compression loading. Mechanical properties of FG plate are assumed to vary continuously along the thickness of the plate according to different volume of fraction functions of constituents. These functions are assumed to have power law distributions. The displacement function is assumed to have the form of double Fourier series, of which derivatives are legitimized using Stokes’ transformation method. The advantage of using this method is the capability of considering effect of any possible combination of boundary conditions on the buckling loads. The out-plane displacement distribution is assumed using Fourier Sinus Series. This results in a general eigenvalue problem which can be used for evaluating the buckling load under different edge conditions, plate aspect ratios and various volume fraction functions. For generality of problem, plate is elastically restrained using some rotational and translational springs at four edges. Some numerical examples are presented and compared the to numerical results of finite element method using ABAQUS and other researchers’ results to validate the proposed method. It has been shown that there is good agreement between them
منابع مشابه
Effect of Non-ideal Boundary Conditions on Buckling of Rectangular Functionally Graded Plates
We have solved the governing equations for the buckling of rectangular functionally graded plates which one of its edges has small non-zero deflection and moment. For the case that the material properties obey a power law in the thickness direction, an analytical solution is obtained using the perturbation series. The applied in-plane load is assumed to be perpendicular to the edge which has no...
متن کاملBuckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
متن کاملBuckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading
In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...
متن کاملBiaxial Buckling Analysis of Symmetric Functionally Graded Metal Cored Plates Resting on Elastic Foundation under Various Edge Conditions Using Galerkin Method
In this paper, buckling behavior of symmetric functionally graded plates resting on elastic foundation is investigated and their critical buckling load in different conditions is calculated and compared. Plate governing equations are derived using the principle of minimum potential energy. Afterwards, displacement field is solved using Galerkin method and the proposed process is examined throug...
متن کاملThermo-mechanical deformation behavior of functionally graded rectangular plates subjected to various boundary conditions and loadings
This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in t...
متن کاملBuckling Analysis of Thin Functionally Graded Rectangular Plates with two Opposite Edges Simply Supported
In this article, an exact analytical solution for thermal buckling analysis of thin functionallygraded (FG) rectangular plates is presented. Based on the classical plate theory and using the principle ofminimum total potential energy, the stability equations are obtained. Since the material properties in FGmaterials are functions of the coordinates (specially the thickness), the stability equat...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 1
صفحات 57- 68
تاریخ انتشار 2009-06-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023